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Abstract 

Over the path space of a symplectic manifold with end points in two Lagrangian submanifolds, 
we define a measure and a stochastic symptectic action in the simply connected case. We define 
a regularized Wess-Zumino-Witten Laplacian over the forms of finite degree over the path space. 
We perform a short time asymptotic near the critical points and find a limit Brownian harmonic 
oscillator: we can diagonalize it explicitly, and find the limit ground state of the Laplacian. We 
define a stochastic Witten complex, and its algebraic counterpart at the level of Chen forms. 
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O. Introduction 

Let us consider the loop space of a compact manifold: that is the space of smooth ap- 

plications from the circle into the manifold. The propagation of a loop is related to the 

conformal field theory, because we consider a path integral over the set of applications from 

a Riemann surface with boundary into the manifold with the conformal group as a symmetry 

group. When there is no boundary, we consider random tori, and the integral over all the 

random tori for the given action gives the partition action of the theory. It is involved with 

a renormalization procedure and called the non-linear ~r-model. In the fiat case, it corre- 

sponds to the free field, and the measure lives over distributions. If we add some fermionic 

part to the non-linear a-model ,  the partition function becomes the partition function of a 

supersymmetric non-linear cr-model and gives the index of some relevant operator over the 

loop space. 
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The Wess-Zumino-Witten model is involved with the perturbation theory: we consider 

the exterior derivative over the loop space, its adjoint, and we perturb it by multiplying 
by a l-form. When this 1-form is dF  for a suitable functional, we call this functional the 

Wess-Zumino-Witten functional. We consider the associated Laplacian and its semi-group 
which is given by a path integral. In particular the trace (or the supertrace) of its semi-group 

is related to integral over random tori (see [JLW1,JLW2] for the case of a non-conformal 
field theory). After these previous works, Arai [Ar] constructed these random tori without 
renormalizing. The measure over the loop space lives over distributions. The integral over 

these random tori gives the index of some infinite-dimensional operator. 
Witten [Wi] remarked that this perturbation of the free operator is related to the Morse 

theory, and this remark was fully exploited in [Bi7,HS] in finite dimension. 
Our purpose is to try to give a rigorous formulation to the argument of Witten in infinite 

dimension. 

For this purpose, we need to compute a Laplacian and therefore the adjoint of the exterior 

derivative. The applicant chosen in [JL2,L4,LR] is the Brownian bridge measure: this allows 

to compute infinite-dimensional operators rigorously over some loop spaces, and by an 

argument of deformation of the Brownian bridge measure, to compute their possible index 
by coming back to a flat model. In [ALR,DrR,LR], the cylinders are constructed with respect 
to the Ornstein-Uhlenbeck operator over some curved loop space: it is a beginning of the 

construction of the random torus. It did not require renormalization, unlike the conformal 
field theory. 

The purpose of this paper is to try to generalize this construction to the case of the sym- 
plectic Morse theory over a path space. The model used here is quite different from the 

model used in [JL2,L4,LR], and is based on the work of Guilarte [Gui]. We give a stochas- 
tic interpretation of the Wess-Zumino-Witten model of Guilarte [Gui], using stochastic 

analysis, at least for the one-dimensional aspect of it, if we do not consider the propagation 
of the loop. 

For this purpose, let us consider namely a compact symplectic manifold M and two 
compact Lagrangian submanifolds in transverse positions L and L'. Rabinowitz, Chaperon 
Conley, and Zehnder have introduced the space of paths going from L to L' in order to 

relate the topology of the full manifold to the structure of the intersection points of L and 
L r. This initial introduction was fully exploited by Floer later. How it can be seen? 

Over the configuration space, we consider a closed 1-form tr which degenerates when 
we are over the constant loops. This form, at least when the path space is simply connected, 
can be integrated: ~r ---- dF,  for a suitable functional F, which is called the symplectic 
action. The global topology of the configuration space, which is involved with the topology 
of L, L t and M, is therefore related to the intersection points of L and L t by means of the 

Morse theory. This Morse theory is the purpose of the Floer homology. Morse theory, as 
it was pointed out by Witten, is related to the Wess-Zumino-Witten model by considering 
the complex d ÷ dF,  its dual d* + idF and the associated Laplacian A F. Moreover, the 
Morse theory arises when we work overa  small neighborhood of critical points: Guilarte 
pointed out that in a Morse system near the critical points over the path space, the Wess- 
Zumino-Witten Laplacian is a supersymmetric infinite-dimensional harmonic oscillator, 
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whose structure is known. Near the constant paths, F is an iterated integral, and we meet 

the problem that the Hessian of F has an infinite number of negative eigenvalues as well as 

positive eigenvalues. A good understanding of this needs to introduce the Dirac sea [Gui]. 

The motivation of this paper is to explain some parts of Guilarte [Gui]. Namely, physi- 

cists use in order to compute the adjoint of an infinite-dimensional operator, the Lebesgue 

measure over the path space, which does not exist. We replace it by the Brownian bridge 

measure, which allows to define Sobolev spaces and other functional spaces. We introduce 

after [Bi2,JL 1] a suitable tangent space chosen in order to get integration by parts formulas 

which depend on a parameter (see [L3,LN] when the parameter space is the manifold and 

not the Lagrangian submanifold). 

This allows to define the bundle of forms over the path space: it is a fermionic Fock 

bundle. Moreover, the form ~r which is a closed Chen form (see [JLI,L5]) can be integrated 

if we suppose that the path space is simply connected. We get a stochastic functional which 

checks for )~ > 0 small enough: 

E[exp[LIFl]] < cx~. (0.1) 

We introduce a connection which preserves the symmetry between L and L', the two 

Lagrangian submanifolds, which arise when we change the sense of the time. This allows to 

define a regularized exterior derivative dr and a regularized Wess-Zumino-Witten operator 

drwzw after performing the scalar gauge transform associated to exp[3~F] over the stochastic 

regularized exterior derivative. The interest to choose a connection is that we can compute 

the adjoint of drwzw and the Wess-Zumino-Witten Laplacian ArWZW. 
In order to try to recover some topological information, we consider the Brownian bridge 

in small time. The probability law concentrates over the intersection points of the two 

Lagrangian submanifolds. We perform Bismut dilatations over the forms, which allow us 

to study the fluctuations over the intersection point of the model. We find Gaussian models, 

and the limit Wess-Zumino-Witten functional is strongly related to the area functional of 

Paul Lrvy. These limit computations are very similar to those of [JL2,L4,LR] (for short 

time asymptotics, the reader can find surveys in [LI,K2,Wa]). The reader can find in [JLWI 1 

computations which are similar in the domain of quantum field theory. But unlike these cases, 

the limit model is new and the limit probability measure is not related to finite-dimensional 

index theory [Bi3,Bi4]. In particular, we choose the couple (x, y)  E TL × TL, with the 

probability law exp(-½ IIx - y 112). This seems to be new in the probabilistic literature. 

At the limit, we find a Gaussian supersymmetric harmonic oscillator. Arai [Ar] has studied 

such operators in the domain of quantum field theory. We can study its behavior using a 

Morse system in infinite dimension in order to diagonalize it; it is strongly related to the study 
of the Ramer functional. The unique ground-state which is in L 2 is exp[~.E/]. In particular, 

there is no cohomology, except for the dimension 0. As it was pointed out by Guilarte [Gui], 

the good understanding of this limit harmonic oscillator needs the introduction of the Dirac 
sea, in order to get non-trivial cohomology groups at the limit; we will not speak of this 
problem, our goal being only to explain how we get this limit harmonic oscillator. This 

explains why the Floer homology is a middle homology theory of the path space [At]. 



310 R. Ldandre /Journal of Geometry and Physics 21 (1997) 307-336 

In the third part, we speak of  stochastics complexes: namely, the price to pay in order to 

be able to compute the adjoint of  the exterior derivative is that we have only to consider an 

operator homotopic to the exterior derivative with its Wess-Zumino-Witten perturbation, 

using suitable connections (see [L2,L4]). 
The problem to define a complex is strongly related to defining an anticipative Stratonovitch 

integral, because we have to take the covariant derivative of  the parallel transport, which 

has a covariant derivative without finite variation. 

Following the lines of  Lrandre [L5], we define a stochastic Witten complex over the 

configuration space, which is continuous for forms which belong to all the Sobolev spaces 

in the Nualart-Pardoux sense: they are involved with the regularity of  the kernels of  the 

derivatives. In particular, we meet the problem that exp[)~F] belongs only to some L p, 

and not to all the Sobolev spaces. Therefore, it seems that the cofiomology of  the Witten 

complex is not immediately related to the cohomology of  the configuration space, because 

the gauge transform is not in all the Sobolev spaces, as it can be checked on the limit 

model. 
On the other hand, d F  is a Chen form: over Chen forms, d F  acts as a shuffle product 

[L6]. This allows us to define a Witten-Hochscfiild complex; we get a map between this 

algebraic model [MC] and the geometrical model using Chen iterated integrals. Over the 

introduced Hochschild space, we define Sobolev norms such that the Witten-Hochschild 

complex is continuous, and such that the map which to element of  the Sobolev-Hochschild 

space associates the corresponding stochastic Chen iterated integral is continuous. 

The reader can find in [IW] or in [El] an introduction to the stochastic differential geom- 

etry. Surveys about the Floer homology can be found in [At,Si,HZ]. 

I. Regularized Wess-Zumino-Witten model 

Let M be a compact symplectic manifold, w the symplectic form, and L and U be 

compact Lagrangian submanifolds: w is equal to zero over L and L'.  We suppose that L 
and L r are transversal such that L fq L r is finite. 

Let us set a Riemannian structure over M. pt(x, y) is the heat kernel associated to the 

Laplace-Beltrami operator. If  we take the Riemannian structure (.)/e2, the heat kernel is 

transformed into ptE2 (X, y). Let P1 (x, y) be the law of the Brownian bridge starting from 
x and arriving at y in time 1, and P,2 (x, y) be the law of  the Brownian bridge associated to 
the Riemannian structure (.)/E 2. 

Let P ( L ,  L')  be the space of  continuous path starting from x 6 L and arriving at y 6 L'  

in time 1. We endow it with the probability measure 

p l (x ,  y ) d P l ( x ,  y ) d x  ® dy 
= d # l ( L ,  L') .  (1.1) 

fL×L' Pl (x, y) dx dy 

Let Yt be a path and rt be the parallel transport from V0 to Yr. A tangent vector is a path 
rt Ht such that: 

- Ho~_T×oL , 
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- r l H 1  E T×~L', 

- Ht is a path with finite energy in T×oL. 
Let us remark that this tangent space is compatible with a time reversal of the path, which 

exchanges L and L'. Namely, 

rtHt = r t r l - l r lHr  (1.2) 

and rt rl -j is the parallel transport between YI and Yt, the path being reversed in time. So 

the calculus is compatible if we invert the role of  L and L'. 

Let us denote by T× this tangent space. We have the decomposition 

ry  = Ty ( t ) ~ ry,based ~) re ( i f ) ,  (1.3) 

where 

Tv(L) = {Xt = zt(1 - t)Xo; Xo ¢ TL}, (1.4) 

Ty(L') = {Xt = r t t r l - lX l ;  Xj • Lr}, (1.5) 

Ty,based = {Xt;  Xo = X l  = 0}. (1.6) 

We decide that these three pieces of tangent spaces are orthogonal and we set as a Hilbert 

structure the following: 

- over Ty(L): 

IlXll 2 = IlXoll 2, (1.7) 

- over T×(L'): 

IlXll 2 = IIX~ II 2, (1.8) 

-- over  Ty.based: 

1 

IlXll 2 = f II d/dsHsll 2as. (1.9) 
. 1  

0 

We have an orthonormal basis of Ty,base d given by Fourier expansion: if n > 0, 

Xn i t = Cr t  sin(2zrnt) _j " " n "rl/2ei' 

where  ei is an orthonormal basis of  Tn/2. I f n  < 0, 

Xn,i,t = Crt cos(2zrnt) - 1 rl_/Jzei. 
tl 

We denote Yi by 

~,t = rt(l  - t)ei 

(1.10) 

(1.11) 

(I.12) 
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and Yi',t by 

Yi',t = r t t r l l  ei • (1.13) 

In (1.12), ei is an orthonormal basis of  TL(YO) and in (1.13), ei is an orthonormal basis of 

TL, (Y1). In (1.10) and (1.1 1), we work over Tyt/2 in order that L and L '  play a symmetric role. 

Let ~ (o9) be the Chen form: 

I 
/ i  

er(w)(X) = ] ¢o(dys, Xs). (1.14) 
t /  

0 

Proposition 1.1. a (co) is closed. 

Proof The proof follows [L3, Theorem III. 1 3] or [GJP]. 
Let us recall that, if er is an r-form, 

(do ' ,  X 1 . . . . .  X r+l = ~ - - ~ ( - 1 )  i - 1  (d(a, X 1 . . . .  ~ i  . . . . .  x r + l } ,  X i) 

i 

_F_ y ' ~ ( _  l ) i + j  (O., [X i ' x j ] ,  X I . . . .  ~ i  . . . . .  ~l~J . . . . .  x r + l ) ,  

i<j 

(1.15) 

where .~ denotes the omission operator. When we take the exterior derivative of  the 

Stratonovitch element og(dys, .), we have to take the derivative of  W(ys) and the deriva- 
tive of  dys. The derivative of  dys leads to the time covariant derivative of  the vector field 

Xs. The derivative of W(Fs) leads to (Vw(ys),  X~). We add and substract the same term 

(Vw(Fs), dF~), and we recognize modulo sign the sum of the integral of  the Stratonovitch 
differential of  (w(Xs, Ys) for the two vector fields X~ and Ys and of the integral of dw( dE~, 

Xs, Ys). But Xo, Yo E T/(Fo) and X1, YI E TL,(YI). Therefore 

1 

f d(w(ys), Xs, Ys) 0 (1.16) 

0 

because L and L '  are Lagrangian. Moreover, dw ---- 0, because 09 is a symplectic form. [] 

Theorem 1.2. Let us suppose that P(L,  L t) is simply connected. Then there exists a func- 
tional F such that dF = cr(w). Moreover, for 2. > 0 small enough 

E[exp[2.lFI]] < oo. (1.17) 

Proof Let 0 < tl < • " " < tn < 1 be a finite dyadic subdivision of [0,1 ], gn a polygonal path 
in P(L,  L'):  y~ has a finite energy, and let y~xed be a polygonal path of  reference. There 
exists a path of  finite variation of  diffeomorphism q/t,s(', Fn) such that d / d t  ~ . s ( ' ,  Yn) 
exists, and such that: 

q~O,s(× n,  ×n) = ×~, (1.18) 
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q.q,~(~, ×,,) = ×fled. (1.19) 

We will suppose in the sequel that d(Yt~, ~'t7+, ) < 3 and that ?'t',' belongs to a finite subset 

independent of n. Therefore the set of  all possible such finite energy curves can be chosen 

in order that the following property is checked: 

- The set of open balls of  radius 5' BO, n, 5') for the uniform norm centered in some V(' 

constitutes a recovering of  P(L ,  L'). 
There are at most C n such y g. Let On be the event UB(y  n , 8'). The exponential inequality 

implies that if 6 and 5' are small enough, 

P(O c C) On+l) < P(sup d(ys, Yt) > r)  < e x p [ - C n ] ,  (1.20) 

the supremum is taken over the times s and t where [s - t] < l /n  for a suitable r.  

Let us choose such a curve yn: it has no bounded energy when n --+ co. But if we 

rescale in order to get a curve ~n over the time interval [0,n], it has therefore a bounded 

derivative when n ~ oc. If  we operate in time n, the family ~r,.~(', )sn), t C [0, 1], has a 

bounded derivative in time s. Therefore, by coming back to time 1, the family tPt.s (', Vn ) 

has a derivative in time s bounded by Cn. Moreover, the diffeomorphism q,q,s (', ?'") can be 

chosen in order to map a fixed small neighborhood of  ~n into a fixed small neighborhood 

of X,fi xed containing a small ball centered in these points with a given radius. Let us work 

on these small balls, qJl,s(Ys, ?,n) belongs to these small balls centered in ~xed.  Then we 

choose a geodesic deformation in order to arrive at ?,~xed using exponential charts, and we 

operate in time [0, 1] using 

expe~xed ~l.s(~s., yn). (1.21) 

Of course this deformation works if d(ys ,  ys(') < 5' for a fixed S t small enough. We get 

therefore a deformation tPs,t of  a path belonging to the ball B(y  n , ~') into )<~xed. The process 

of  deformation in time t is a semi-martingale, and the derivative in time t is a semimartingale 

~) tPt ~ is bounded, the It6--Stratonovitch which is bounded in time s in all the L p. Since ~y ,. 

formula [Bi l l  shows that the martingale part in time s of qJt,s is bounded in all the L p and 

checks the exponential inequality. The finite energy part is bounded by Cn. 
Let us suppose that d (g ,  yn) < ~,, and set 

O 
F(y ,  yn) = f a(w) (dsqJt,s, -~qJt,s) . (1.22) 

lO.21xlO, ll 

From the previous considerations, we have, i f  d (v ,  V n) < 6, 

Elexpl~.lF(~', Y~)I]] < Cexp[COOn], (1.23) 

where C(X) ~ 0 when Z ~ 0. 

The problem is that we can change the value of  F ( y ,  yn) if y belongs to different 

small balls B()/n , 5) and B(~/n' , 5) together. We use the support theorem of  Ben-Arous and 

L6andre [BAL] or Aida et al. [AKS] in order to show in such a case, that almost surely, 

F(y, yn) = F(y, yn') (1.24) 
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using the fact that P(L,  U) is supposed to be simply connected. We get, therefore, a 
functional F ( y )  over P(L,  L I) by patching together all these functionals. Moreover, 

E[exp[XlFlll  _< Z E[ I  o, no,~ , exp[XlFlll _< E Cn exp[C(X)nl e x p [ - C n l ,  
n n 

(1.25) 

where the C n arises from the number of ways to get curves Yn. 

This series does not converge, but if we operate in time E 2 with the measure 

d # d ( L ,  LI ) = pd(x ,  y ) d P d ( x ,  y ) d x  ® dy (1.26) 
fL×L' p~2(x, y )dx  dy 

and if we take the functional F/E 2, we get the upper bound 

n - ~ -  F IFill c" Ee exp 1. --~-J.] < Z exp exp , (1.27) 
t /  

where C does not depend on •. Therefore, 

] 
for X independent of  • and for • small enough. By changing the Riemannian metric, we 

can come back to time 1, and we have (1.17) for • small enough. In order to simplify the 

notation, we will operate in time 1. 

In order to show that the H derivative [Grl of  the corresponding functional is or (w), we 

will consider a polygonal approximation of  y,  gn, which is defined modulo a smooth cutoff. 

F(yn) has a derivative in the classical sense, which is a(o))(yn), because in this case we 

work in finite dimension, and over smooth loop. 

In order to define Sobolev spaces, we take a polygonal approximation of  our path, and we 

denote by r n the parallel transport which is associated. If  F n is a functional which depends 

only on our polygonal approximation, we decide to take its derivative along the vector 

field rtn Hr. F belongs to all the Sobolev spaces with one derivative if it is the limit of F n 

which depends only on the polygonal approximation in the Sobolev spaces with the tangent 

space given by rfl Hr. This definition has sense because the approximated tangent vector has 

divergences over the polygonal model by L6andre [L2] which tend to the divergences over 
the infinite-dimensional model. For higher-order Sobolev calculus, we proceed step-by-step 

and not globally as it is usual: a derivative of  order r is derivable if there is a polygonal 
appoximation which is derivable in the previous sense. This needs to use some connections, 

because the r derivatives are r cotensors. We will not precise this choice of  connection for 
the moment. 

It remains to precise the smooth cutoff which allows to use the polygonal approximations 
of  the path. Let g be a real function, which is constant equals to 1 near 0 and equals to 0 

not very far from 0. The smooth cutoff is G n = I1 g(d(?'ti, yti+~ )) which tends to 1 in all 
the Sobolev spaces by the exponential inequality. [] 
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Remark .  Let us now precise how we can overcome the problem that supd(Fs, F.~) is not 

smooth if E~5 has a bounded energy. We proceed as in [JL2] or in [L4]. Let h be a function 

from [0,1] into [0, oc] which is equal to l / ( - x  + 6)P i f x  --~ 3_ and +o~  i f x  >_ ~ and 

which is equal to I in a neighborhood of  0. Let us consider 

and 

I 

H = f h(d(E~., En)) ds 

0 

(1.29) 

G(F) = g(H)  (1.30) 

from g from [1, cx~] into [0,1] with a support into a small neighborhood of 0 and which 

is equal to 1 in 1. If G # 0, sup d(vs, Ys") < 6". G moreover belongs to all the Sobolev 

spaces. Namely from the exponential inequality we deduce that: 

( , , ) > - ; H  < C < C(p)~ p (1.31) 
P sup (-d(E~,  Es 9) + 3) + _ ~ 

for all p. This shows us the property. 

L e t  o- / (e)  be a wedge product of  Xn,i (e), Yi (e) and Y[(e) for a smooth system of sections 

ei of T×~/2, ei of Tyo(L) and ei of Tvt (L'). We choose as core A the set of  finite combination 

¢Yt (e) with cylindrical components. ¢y belongs to A if 

cr --_ Z FI (e)cYl (e). (1.32) 
l.e 

Let us set 

drwzw = Z Vx,,i(e)/x X(n,i)(e) 

+ Z Vyi(e) /x Yi(e) + y ~  Vy'(e ) A Yi'(e) + d F A  (1.33) 

for any local orthonormal basis ei of TvI/z(M), Tyo(L) and T×~ (U).  We have to define 

in (1.33) a connection which preserves the metric. Over T× (L), we take the pullback of 

the Levi-Civita connection of  the Lagrangian manifold L over X0 by the evaluation map 

2/. --~ Y0. Over Ty (L'),  we take the pullback of  the Levi-Civita connection of  the Lagrangian 

manifold L'  over Xi by the evaluation map E --+ )/1. Over TF,based, we decide to write our 

vector rt r ~ H t  where Ht belongs to T×~/=. We take the covariant derivative of  Fit for the 

pullback of  the Levi-Civita connection over M for the evaluation map E --~ V1/2. The 

connection preserves the Hilbert structure. 
Since V preserves the metric, we get formally 

dr*wZW = Z ix,,.i (e)(-VX,, , i (e)  -~- divXn,i (e)) 

+ Z iyi(e)(--Vr~ (e) + divYi(e) 

+ Z i~'(e) (-Vr,:~ e) + divY'(e)) + idF, (1.34) 
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where the local orthonormal basis is chosen as before. We use that the adjoint of  an exterior 

product by a vector X is an interior product ix by the same vector. 

Of course (1.34) has a sense only locally, because we need to use local sections of  

orthonormal basis e. In order to simplify the exposure, we will not write the partition of 

unity which appears in our computation, and which should appear in the divergences. 

Let us recall the Bismut formula: 
! 

Vxrt = rt f r~ j R(dyu, Xu)ru. (1.35) 

0 

This implies 

t 

Vxrt -1 = - f  ru - I  R(dyu, Xu)rurt I . (1.36) 

o 

We deduce from this that for n > O: 

1 

divXn,i = C f (rs cos(2~ns)  rl-/lei (YI/2), ,~gs) 

o 
I 

+c f (sx.,,s,. 8gs> + O ( 1 / n ) ,  ( 1 . 3 7 )  

0 

where S denotes the Ricci tensor. We also have too for n < 0: 

I 

divXn, i = C f (Ts sin(27rns) rl-/~ei(Yl/2), •Ys) + O(1/n) .  (1.38) 

o 

We have 

1 1 

divYi = divei(Yo)- f (rsei(YO),'ys)-I-1/2 f (1.39) 

0 0 

We get an analoguous formula for divY/t by reversing time. 
Let us now prove (1.39). We consider the family of  Brownian motion over the manifold 

starting from x ~ L chosen at random Popen(L). By [LN,L2,L3], we have 

EPopen(L)[( dF, Yi)f(Y1)] + EPopen(L)[F( d f (yl), gi)] 

= EPopen(L ) [FdivYi f(Yl)]. (1.40) 

But Y/,l = 0. Therefore ( d f ( y l ) ,  Y/) = 0. We deduce that 

EPop~n(L)[(dF, Yi) ]Y1 = Y] = Epopen(L)[FdivYi l YI = Y] (1.41) 

and therefore (1.39) for P(L, Lt). 
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Let us remark that if t(l.e is a cylindrical functional, we have 

](dFl,e, Xn,i(e'))] = O ( l / n )  (1.42) 

and more precisely, 

](dFI,e, Xn,i(e'))] < C/n,  (1.43) 

where C is bounded in all the L p. 
Since in A, we consider finite combination of  wedge products, we deduce that drwzw 

and drwzw are defined over A. The supercharge Q = drwzw + drwzw is symmetric, 
therefore closable. 

Definition 1.3. The regularized Wess-Zumino-Witten Laplacian is Arwzw = ( drwzw + 
* 2 

drwzw) • 
D denotes the operation covariant derivative of  a vector field over a loop. 

Theorem 1.4. ArWZW = ( drwzw + drwzw) 2 is defined over A, and symmetric > O. It 
has therefore a self-adjoint extension. 

Proof The fact that A r W Z W  has a self-adjoint extension arises because ArWZW is symmetric 

>_ 0 densely defined. 

ArWZW can be split into different parts: 

(a) dr d~: Let us recall that VX, VXmXn,,i(e) has a behavior in C/(Inl + 1)(IMP + 1), and 
that Vx,, Vri Xn, i (e) as well as the term obtained by inverting the order of  the derivatives 

has a behavior in C/(In[ + 1). Therefore in drdr, when we create two fermions, it has a 

component in C/[(Inl + 1)(Iml + 1)] for the previous reasons and because 

C 
I (d (dF ,  Xn), Xm)l < (I.44) 

([nl + 1)([m[ + 1) 

because of  (1.35). We do the convention that the derivative in Yi or in 1I/' is enumerated by 

i = 0. Therefore if ~r a A, dr  drcr  is a series of  forms which belongs to L 2. 

(b) d* d*: If 0r E A, since ~ is a finite sum, d*~r is still a finite sum, and therefore d* d*c~ 

is still a finite sum. This term does not cause any difficulty. 
(c) dr d*: If~r 6 A, d*~r is a finite sum, and therefore dr dr* is a series which belongs to 

L 2 . 

(d) 
i s :  

dr* dr: It causes some difficulties. Namely, there is an apparently diverging term, which 

Z -Vx,(ei)ix,,(ei) A Xn(ei)VX,,(ei)~ r q- Z divX,,(ei)ix,,(ei) A Xn(ei)Vx,,(ei)Cr. 
n .i n,i 

(1.45) 

But 

1 

divXn(ei) = f (DXn(ei)s, 3Ys) + O(1/n) .  

o 

(1.46) 
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In Vx,(ei)cr, we take the derivative either of  a component of  a cylindrical function which 

is a sum of  expressions of  the type ot(cos(23rnti) - 1)/n or/3 sin(2mrti)/n where ot or/5 

is a fixed random variable. We have the same property if we take the derivative of  o~t (e). 

Therefore the only really diverging term in Y~ divXn (ei)ix, (6) A Xn (ei)Vx, (ei)t7 is the term 
which arises from the stochastic integral in (1.46). But we recognize in the sum of this last 

term a stochastic integral of  a deterministic process which is L 2 by a fixed random variable, 

or more precisely a sum of such expressions. 

Let us study the second-order term in (I.45). VXn(ei)t7 is a polynomial expression in 

cylindrical term and in the parallel transport taken in a finite set of  time mutiplied by 

l/n. The second derivative is by (1.35) a term in l/n 2. There is therefore no problem of 

convergence. 

(e) d r d F A :  In dF ,  we create a series of  Xn(e) multiplied by terms of  the order of  

C/(Inl + 1). In dr, either we derive ~r, and create a series of Xn A Xm multiplied by term 

in C/((Inl + l)(Iml + 11) which converges in L 2, or we take the derivative of dF ,  or 

more precisely of  the component of  d F  which are fo l (~o(dys), Xn(e)s). Either we take 

the derivative of  oJ or of  Xn (e)s in that expression along Xm (e), which leads to a term 

in C/(((Inl) + l)([ml + 11) which gives a series which converges in L 2. Or we take the 

derivative of  dys. This leads to the series 

I 

E f ° ) (DXm(e i ) '  Xn(e j ) )Xm(e i )  A Xn(ej ) .  

0 

But by an integration by part 

1 

f to(DXm(ei), Xn(ej)) 
0 

(1.47) 

1 

( 1 ) - f o ) ( X m ( e i ) , D X m ( e j ) )  
= O  (In[ + 1)(Im[ + 1) 

0 

I 

( 1 ) f = 0  ( [ n l + l ) ( l m [ + l )  + w(DXn(ej),Xm(ei)) 
0 

(1.48t 

by the antisymmetry of  o9, and therefore the diverging term in (1.47) cancels because 

Xm(ei)  A Xn(e j )  = - -Xn(e j )  A Xm(ei) .  

(f) d F  A dr: We create a series of Xn A Xm, whose all the components are in C/((Inl + 
l)(Im[ + 1)), which therefore converges. 

(g) Let us study the tensorial terms: d F  A d F  is equal to zero as well as idFidF. It remains 
dF.idF + idF. dF. This term equals to I1 dFII 2 which is in L 2. 

(h) d F  A dr*: dr*cr is a finite sum. This term does not cause any difficulty as idF. dr*. 
(i) d*idF: idF~r is a finite sum, because a is a finite sum. Therefore d*idFtr is a finite 

sum, which does not cause any difficulty. 

(j) A difficult term which remains to be treated is iaF A dr: but in dr, when we create 
an Xn, there is a term in C/n before it, and we annihilate a term in Xn in iaF, there is a 
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term in C/n before it. Therefore the series converges. Moreover, dridF does not cause any 

difficulty, because idFCr is a finite sum because e is a finite sum. It remains to apply the 

integration by parts used in (1.47) in order to conclude. 

(k) The last term that remains to be studied is d* dF.  This leads to an apparently divergent 
term to treat. It is 

J ) / - ~ _ , £ d  ~o(d×~,X~.i),X~.i + ~__, ~o(d×~,X,,,~)divX~.~=div2~, (1.49) 

0 0 

where ,k'i is the vector over the based loop space given by 

( / )  DXi,s = rs  - -  w ( d F u ,  "CUrl/~ei)+C zl-/~ei ( 1 . 5 0 )  

0 

for some suitable random variable C constant in time s. The conclusion follows easily from 

the fact that the process s -*  f0 ~ w (dv . ,  ru) is adapted, because the It6 integral is equal in 
this case to the Skorohod integral. [] 

2. Limit Brownian harmonic  oscillator 

Instead of  using the measure d/zj (L, L'),  we use the measure 

d#~2(L, L') = PEz(x' Y)dPE2(x' y ) d x  ® dy (2.1) 

fLxL' PE 2(x' y) dx dy 

Over T×, we keep the splitting (1.3), but we change the metric and divide it by e 2. X,,i, Yi, 
Y[ are changed in eXn,i, eYi, eye. Let us introduce Mi the intersection points of L and L'. 

In order to define d~rwzw and d*rwzw, we perform the gauge transform associated with 
exp[k(F/e2)] ,  by using (1.28). As forms, the vector fields Xn,i, Yi, Y~ are kept. 

Let us introduce ~bi (Yo, Fl, FU2) a smooth cutoff function, which is equal to 1 if F0, FI, 

and F1/2 are close enough to Mi and such that 0 _< Y~ ~bi _< 1. Ifq~i is not equal to 0, and if 

the support of  ~bi is small enough, there is a smooth section of orthonormal basis of T×o (L), 

Tyi/2(M) and Ty I (L').  
Let us define Bismut's dilatation (cf [JL2,LR,L4]): let ti be an enumeration of  the rationals 

over [0,1 ]. Bismut's dilatation of  a scalar functional is defined if F0 and FI are close enough 

to a point Mi of L and U.  We denote in such cases by / /Y0  and by /Tv l  this intersection 

point (see [LR]). 

We choose 

F = f(HFo) H ( f / ( F t , )  - f / (HF0)) ,  (2.2) 
l(n) 

I (n) describes the set of  part of  cardinal n of  Q. Let us suppose that the finite sum 

Z f i (Hy0)  H(fi , t(y, ,)  - fi,t(Hyo)) (2.3) 
I / 
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is equal to zero. Since all the I are distinct, each component is equal to 0. This allows 

us to define Bismut's dilatation of  such a functional if Y0 and Yl are close enough to the 

intersection point Mi. If  F satisfies (2.2), 

B E E  = f ( H y o )  H J~ (Yt,) - f i ( /Tyo) ,  (2.4) 

l(n) 

it can be extended by linearity. 

Moreover: 

f (17yo) H (fi()'ti) - f/(/-/)'0)) 
l(n) 

= f ( H y o )  H (3~(Yt,) - f i (Hyo ) ) f n (Y t , )  
/(n-l) 

- f ( 1 7 y o ) f , ( H ) ' o )  V I  (f,'(Yti) - f / (H) '0))  (2.5) 
/(n-l) 

By induction over n, we suppose that each cylindrical function f (17yo,  Yt~ . . . .  Yt,_~ ) is the 

limit in L 2 of a sum of functions F of  the shape (2.2) with a cardinal smaller than n - 1. 

We deduce that f (H) ,o ,  )'t~ . . . .  )'t,_j )fn (Ytn) is a limit of such a sum, and therefore that the 
set of  functionals for which Bismut's dilatation is defined is dense in L 2 using the Stone- 

Weierstrass theorem, provided that Yo and yj are close enough to an intersection point of  

the two manifolds. 

If q~i is not equal to 0, there are orthonormal bases of  Ty Xn.i, Yi, Y[ which depend in 

a smooth way on )'1/2, Y0, YL. We deduce an orthonormal basis (r/ of  the fermionic Fock 

space. Let cr = y~ Fiat when )/0, YI, and Yl/2 are close enough to Mi. We define Bismut's 
dilatation 

BE~r = ~_~ BE ( FI )(r l (2.6) 

if the FI are finite combinations of  functionals of  the shape (2.2). Therefore BE is defined 

in L 2 of  sections if )'0, )'1 and )'1/2 are close enough to the intersection points of  L and L'. 

If  it is not the case, we perform no operations, and we stick together these two procedures 
by a smooth cutoff. 

The idea is now to take E --~ 0. 

Let us define for that a limit model. We take a family of  Gaussian spaces indexed by 

the finite set of  points Mi of the intersection of  L and L'.  We choose the set of  Brownian 

bridges starting from x E TL(Mi) and going to y ~ TL,(Mi): the Brownian bridge lives in 
TM (Mi). The law of  (x, y) is the non-degenerate finite-dimensional law: 

C exp 1 [ _ 1  IIx - yll 2] dx ® dy = dQt(x ,  y). (2.7) 

This Gaussian law is non-degenerate because TL(Mi) G TL'(Mi) = TM(Mi). Let Bt,f la  t 

be the Brownian bridge starting from 0 and coming back to 0 in TM(Mi). The Brownian 
bridge between x and y satisfies: 

)'t,flat ---- x(1 - t) + y t  + Bt,f la t -  (2.8) 
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The limit Wess-Zumino-Witten functional is 

I 

F, _- f w(dE~,flat, E~.flat)- 
0 

(2.9) 

Let us compute dFl. The tangent space of a flat path is given by a curve Xt = X( 1 - t) + 
r, + fd n: ds, where fo' H; dL~ = 0. We have 

I 1 

(dF~. x>-- ½ f o~(d×..,a,, x.a + ½ ×,,,~,)~. 
o o 

(2.10) 

We integrate by parts and we use the fact that w is antisymmetric, and that L and L' are 
Lagrangian. We deduce that 

1 

(dF/, X) = f o~(dE;.tht, X s ) .  

0 

(2.1t) 

Since w is antisymmetric, we can consider in (2.9) a double It6 integral or a double 
Stratonovitch integral. We can write w in M i  in a suitable orthonormal basis as a finite 
set of matrices 

X i 0 " 

The limit Wess-Zumino-Witten functional can be split into three parts: 
(a) A sum of Levy areas X i / 2 ( f d  dB,! B 2 - fo 1 B 2 dB.~). In order to understand this 

contribution, let us write 

dB~! = C Z Xn cos(2rrns)ds + C Z /zn l  sin(2rrns)ds, 

2 cos(2n'ns) - 1 9 sin(2rrns) 
B 2 = C Z - . n  + C Z ; k 7 7  

n t/ 

We have 

(2.12) 

(2.13) 

I 

f Z (  ' 2 K n2n//, ) 1 2 Znl'tn 
d B  s B s = C _ + n . 

11 
(2.14) 

After using an integration by parts, we deduce a system of Morse coordinates for this part 
of the limit symplectic action 

I f ~ s '  ~ :  = c •  { 2  (]'t'nl q-n K2)2 2 (/'Lnl--n ~'n2)2 

0 
q - Z  ( .2 __)1)2 } 

n G (.2 +n x,)2 (2.15) 
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Let us set 

1 1 

YJ = f sin(2rrns)dBJ + f cos(2~rns)dB 2, (2.16) 
0 0 

1 1 

Yff = f sin(2..s)dB 2 + f cos(2.ns)dBJ, (2.17) 
o o 

1 I 

Zln = f sin(2Jrns)dB 1 - f cos(23rns)dB 2, (2.18) 

o o 

I I 

Z 2 = f sin(2zrns)dB 2 - f cos(2~rns)dB~. (2.19) 

o o 

The system of Yn I , y2, Zn 1 ' Z 2 consist of  a system of independent Gaussian variables of  the 

same expectation and with the same variance. Moreover 

1 f dBlsBZs=C {E (111)2_n_C E (ZI)2-n-C 
0 

+ Z2 - c Z - c } 
n n 

(2.20) 

(b) Let us study the interacting term between the infinite-dimensional part and the finite- 

dimensional part. An integration by parts shows 

I 1 

f m(y - x, Bt,ltat) + f w( dBt,ttat, X(1- t) + yt) 
0 0 

1 1 I 

= f w(y -x ,  Bt,lat)- f ~o(Bt,llat, x - y ) = 2  f w(y-  
0 0 0 

x, Bt,flat) (2.21) 

because L and L '  are Lagrangians. Therefore in the system of Yn 1, Yff, Zn 1, and Zn 2 after 

writing the symplectic form in the simplest way, the interacting terms are in C/n.  
(c) The finite-dimensional part is finite and does not cause any problem. 

Let H be a Hilbert space and an abstract Wiener space associated to this Hilbert space, 
and O be a symmetric Hilbert-Schmidt operator ai,j after choosing an orthonormal basis 
of  H. Then 

0 (tO) = E ( a i , j  Zi Zj - ,~i,jai, j)  (2.22) 
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is called the Ramer functional associated to the Hilbert-Schmidt operator O IRa2, AB]: 

the Zi denotes the system of independent centered Gaussian variables associated to the 

orthonormal basis. O ( w )  is in L 2 and is independent of  the choice of  the Hilbert basis. 

From the previous considerations, we deduce that F/ is the sum of a constant and of  a 

functional of  the type (2.22). In particular, if ~ > 0 small enough, then 

Elexp[XlFtl]] < ~ .  (2.23) 

Namely, we can split F/ in a sum of L6vy areas which check (2.23), finite-dimensional 

quadratic terms which check (2.23) and an interacting term fo  oJ(x - y, Bt,flat) which is 

smaller than Cllx - yll sup IBt,flatl. But if )~ is small enough, we can use the exponential 

inequality in order to show that E8 [exp[Z IIx - y II sup I Bt,natl] < exp[C (,k) IIx - y II 2], where 
C(Z) --+ 0 when Z --~ 0. This allows us to conclude. 

In order to simplify the exposure, we will suppose that Z = 1. 

At the limit, we consider the operator dr, the Shigekawa complex of  the limit Gaussian 

model [Ar]. We add the Wess-Zumino-Witten term dFt (see [Ar]). We get an operator 

dlwzw = d/ + dFtA. Its adjoint can be computed: it is d~ + idF~. The only difference in 

the computation of  d~ in [Sh] is the finite-dimensional Gaussian term exp[-½ IIx - y 112]. 

The divergence of  the constant vector X c T L ( M i )  is  (X, x --  y )  and of  Y c TL, (Mi)  iS 

(r', y - x ) .  
We see that d# ,2 (L ,  L') tends in law to  ~oli~Mi for some positive reals ~i. ~ i  = I, 

~i > 0. As limit model, we choose the point M i with the law oti and around these points 

the previous Gaussian law in order to analyze the fluctuations. 

Let us now precise what we mean by a theorem in law. The fiber is isomorphic to 

ATL(YO) A AL ' (y t )  /x A×I/2(H), where the last expression denotes the Fermionic Fock 

space with values in Tyt/2(M) of the flat Brownian bridge. But if Yo, Yl, 77/2 are close 

enough to M i, w e  can introduce the parallel transport along the unique geodesic joining 

Mi tO Y0, the parallel transport from Mi tO Yl along the unique geodesic joining these two 

points and the parallel transport from M i to  )"1/2 along the unique the geodesic joining these 

two points. In this case, the fiber is isomorphic to AL(Mi)  A AL , (Mi ) / x  AMi (H).  In the 

other case, we choose as fiber the original A TL (Vo)/x A TL, (~'j) /~ A ×~/2 (H)  and the space 

of L 2 section in Y0, VI, ~'1/2 of  this Hilbert bundle over L x L'  x M. We have a random 

variable in this space of  sections, when we are far from the intersection points. In this case, 

if cr ~ A, E, [la 12] ~ 0 and therefore o ~ 0 in law, when we are far from the intersection 

points, when we do not perform any Bismut's dilatation. 
We have the following theorem, which justifies the introduction of the limit model. 

Theorem 2.1. For any fixed cr element o f  A where Bismut's dilatations are defined, we 

have, in law: 

B~cr ~ ~rl, (2.24) 

derwzwBEo" ~ dlwzwcr/, derwzwBecr ~ dlwzwCrl. (2.25) 
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Proof We work in normal charts in Mi. We perform in Mi the rescaling x ~ ~x in the 

direction of  TL and y ~ ~y in the direction of  TL,. Let us recall that TL ~ TL, = TM in 
Mi. This has the effect of  canceling the ~-d which occurs from the asymptotic expansion 

of  the heat kernel near the diagonal (see [Bi4] for analoguous considerations): 

--d exp C [ d 2 ( x , y ) ]  2~ 2 j o(~N)) (2.26) Pe 2(x' Y ) =  ( Z  ai(x, y)¢2i + 

(see [L 1 ]). Moreover in a system of exponential charts near Mi 

gs = ex(1 - s) + sey + eBs,flat + ¢v2s (2.27) 

with a greater probability (see [Bi4]). Let us explain the role of  v2. For this, let us introduce 

the canonical horizontal vector fields Xi over the Riemannian manifold. Let us study the 

equation over the frame bundle 

dus = Z Xi(us)(~s(-x + y) + E dBs,flat h- ~5 v2s). (2.28) 

Let us denote by rrUs the canonical projection of  Us over the Riemannian manifold, rru0 = 

Mi + Ex. We choose v2 such that rrul = Mi + Ey. It is asymptotically possible with a 

greater probability (see [Bi2,Bi3]), and the error term cancels when E --~ 0. 

(a) Let us show that in law BEa --~ at. We have 

1/E(f(yt~) -- f(FIFo)) = 1/E(f(Fti) -- f (F0))  + 1/E(f(F0) -- f(FIFo)). (2.29) 

This tends in law to 

ti 

f (df(Mi) ,  + +dBs,flat) + ( d f ( m i ) , x )  ~ X Y 

o 
= {df(mi) ,  (1 - ti)x} + (df(Mi),  tiy) + (df(Mi),  Bt~,flat). (2.30) 

After choosing over the Mi the law given before, we deduce the first point. 

(b) Let us show that d~rwzwBEa --~ dlwzwa! in law. We consider derivatives along the 

vector field ~ Xn,i, ~5 Yi, ~ Y;. Therefore at the limit no derivatives of  the (9" I appear. It remains 

to consider the derivatives of  BE Ft. Let us study the derivative of  (f(Yti) - f (H(yo))) /~  
over E Xn,i , E Yi , E Y[. It is 

(df(Yti), Xn,i,ti) - (df(yo) ,  Xn,i,O) 

+(df(y0),  Xn,i,o) - (d f (HFo),  Xn,i,O). (2.31) 

But, Xn,i, 0 = O. f ( l - l y o )  is constant, and therefore its derivative equals 0. So at the limit, 
we recognize the derivative of  (df(Mi),  Bt~,flat) over the flat Brownian bridge vector field 

Hn(ei): Hn = C(cos(2~rns) - 1)/n or Hn = C(sin(21rns))/n) i fn  > 0 or i fn  < 0. The 
derivatives over Hn (ei) of (df(Mi) ,  (1 - ti)x) or (df(Mi),  ti y) are equal to 0. 

Let us study the derivative following (Yi. It is 

( d f  (yt~), rt~ (1 - ti)ei). (2.32) 
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At the limit, it is {df(Mi),  (1 - ti)X), which is the derivative of  (df(Mi),  YtJat) along 
the derivatives of  the vector field (i - ti)X. 

We have the same computations for the derivatives over E Y/'. 
The better originality with respect to [LR] arises from the Wess-Zumino-Wit ten term. 

It is 

Z (dF, EXn.i + Z  (dF,~Yi} + Z  (dF, EY;) , 
E2 ) Xn i /~ - Yi A Yi A (2.33) 

• E ~  E 2 " 

But the family of (dF ,  EXn,i)/E 2, (dF ,  EYi)/E e and (dF ,  EY/')/E 2 tends in law to the 

family o f f~  co( dys,flat, Xn,/,s), f~ oJ( dy.~.nat, Y/.~) and f~ w( dys,flat, Yi' ,,), each term being 

bounded in L 2 by C/n in the first expression. This shows us that 

d F  A B¢cr --> dF# A or/. (2.34) 

* B (c) Let us now study d~rwz w ~cr. It is a finite sum. The term in - ix , , . iVExn. i&o,  
- iv i  Ve y~ Be~r, - i v :  V E ~, Be cr are treated as in (b). Moreover, 

E fo  (DXn, i ,  •Ys) E 2 
div EXn,i -- E2 + ee2-- (Sx,,,, aE~), + counterterm. 

0 

(2.35) 

Therefore the family 

1 

6Xn.i ----> I (Xtn'i' S}"s'flat) div (2.36) 

0 

in law. The main difference with [LR] lies in dive Yi and dive Y/'. But 

1 1 

div E Yi = E div ei - 7- 5 (rsei, Sys) + -~ (SEYi, Sys), (2.37) 

0 0 

which tends in law to (ei, x -- y) ,  the divergence of ei E TL over the limit model. We have 

a similar type of computations for dive Yi'. 
Let us study the Wess-Zumino-Wit ten term. It is 

Z (dF ,  EXn i) (dF ,  EYi) (dF ,  EY/') . 
E2 ' ix,,,i + Z E2 iYi + Z E2 tg/. (2.38) 

By considerations same as those for the Wess-Zumino-Wit ten term for d~rwzw, we see 

that it tends in law to idF~Cr#. 

R e m a r k .  We separate, in order to give a nicer exposure, the convergence in law of the 
different pieces of  the considered series. It is not completely correct, but the convergence 
in law of the global expression is ensured by Bismut 's  procedure (2.28). 
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Let us now introduce the limit Wess-Zumino-Witten Laplacian; in the case of a general 

interacting term, it was extensively studied by Arai [Ar]: 

AIWZW = (d/q- dFt + d~ + idF/) 2. (2.39) 

Theorem 2.2. Let us suppose that E[exp[21Ftl]] < oc. AIWZW is a harmonic oscillator 
which has exp[ -F / ]  as unique ground-state. 

Remark. We will do away the convention that exp[ -FI ]  is in L 2. If it is not the case, we 

can take exp[-~.Ft]. 

Proof Let us recall that d + dFtA is complex because it is equal to exp[ -F t ]  dexp[Fl]. 

Therefore, 

AlWZW = (d + dF/m)(d* + idF~) + (d* + id&)(d + dF/m) 

= dd* -I- d ' d +  dFlidFt +idFtdFI + didFt + dFld*Wid&d+ d*dF/ 

(2.40) 

Let us introduce the Bosonic Number operator NB and the Fermionic number operator NF. 

We have [Sh] 

d d* + d* d = NB + NF. (2.41) 

Moreover, clearly, 

dFidF + idF dF  = IP dFl[ 2. (2.42) 

Let us introduce an orthonormal basis xi of the limit abstract Wiener space. We have 

d = Z O@i dxi, (2.43) 

0 . + xiidxi. (2.44) d* = - ~ ldx , 
Oxi 

This shows us that: 

0 ( ~ O F )  02F OF 0 
did& ---- Z ~ dxi \ - -  = Z OXiOXj dXiidxa + Z ~Xj dXiidx, OX," 

(2.45) 

Moreover, 

dFld*---- Z -~xj dXj - Z Oxi idx, + xiidxi 

OF OF 0 
: Z ~xjdXj xiidxi - Z -~xj dxjidx' Oxi (2.46) 
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and 

OF 0 
id& d = Z Oxj idxj dxi -~xi" (2.47) 

Finally 

OZF 02F 
d*dFI=NBFI- ~ OxiOxjidxidxi + Z Ox~ dxiidxi 

i~j 
OF OF 0 OF 

+ Z - Z dx, - Z dx, (2.48) 
i~:j OXj OX i 

If we sum the differential terms in (2.45) and (2.46), since dxiidx j + idxj dxi = ai,j, we 

find 2 ~-~(OF/Oxi)(O/Oxi) .  But this cancels, if we sum the differential terms in (2.46) and 

(2.48). This shows us that did& + dFt d* + ia& d + d* dF/ = Ct is a tensorial operator. 

Moreover, 

OZF OZF 
C1 = NBFI + 2 Z OxiOxj dxiiclxj + 2 Z Ox--~ dxiidxi. (2.49) 

i#j i 

Let us recall that for ai, j  symmetric Hilber t-Schmidt ,  we have 

F = Z a i , j ( x i x j  - ~i,j)  -{- C. (2.50) 

We deduce that 

CI = NBFI + 4 Z a i ,  j dxiidxj + 4 Z a i , i  dxiid.~i. (2.51) 
i:fij 

Let ak = Y~ ak,i dxi .  Y~ cr2i = 1. al A . . .  A ak is in the domain of Cl. 

For k = 1, it is clear. Namely ~ ai,ial,i dxi converges because ~ a  ? < ~z, by I , I  

the Cauchy-Schwartz  inequality. Moreover, Z i ¢ j  ai , j  dxiCrl,j has a norm bounded by 

Z(Ej  ai,j~71,j) 2 <~ Z(Y~j a2j)( y~ O'?,j) which is finite because ai,j is Hilbert-Schmidt .  

It is enough to study the case k = 2, because dxiidxj can act only over two elements of 

the wedge product. The disturbing case is when idxj acts over the first one and dxi over the 

second one. We get 

Its norm is 

z (Za/,o,So2. Z 22 < ai . j~l , j ,~2, j , ,  < 00, 
i , j , j '  i , j , j ' , j"  

(2.52) 

Let us do the same hypothesis over dXiidxi. We get 

(2.53) 
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Z a i , i d X i i d x i ( Z C r l , j d x j A c r 2 , j ' d x j ' ) = Z a i , i d X i a l , i A Z a ,  a2,j'dxj '÷ term,  
J 

(2.54) 

which belongs in L 2. 
Let us diagonalize ai,j. We find 

C! = E Z L i ( x 2 - 1 ) +  Z4)~idxiidxi 

and 

32 3 
N B = - - Z ~ - x 2 i  +xi~--xi 

and finally 

NF -= Z dxiidxi. 

AIWZW can be split into a series of  commuting operators of  the shape 

02 O 
Ox 2 + x ~ - -  x + 2~.(x 2 - 1) +4~.dxidx + dXidx + 4~.2x 2 = /11. 

In order to diagonalize Al, let us try to get a harmonic oscillator. 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

First, we use the constatation that the scalar Ornstein-Uhlenbeck operator --O2/OX 2 ÷ 
xO/Ox is a harmonic oscillator when we use the transformation f ---* exp[xZ/4]f. We have 

therefore to diagonalize for the Lebesgue measure the operator 

02 
8x 2 + x2(4~.2 + 2~. + 1) - 2MdxdX + Z)~dXidx - l +  dxidx =/11. (2.59) 

We recognize modulo the number operator dXidx a supersymmetric harmonic oscillator. 
The eigenvalues of  the first one are (2k + 1)(12~. + ½ l) [DW]. The second operator 

--2),idx dx + 2;. dXidx -- ½ + dxQx (2.60) 

has eigenvalues +(2).  + ½), whether we have a fermion or not. 

But we have supposed that 

E[exp[21Fll]] < oo. (2.61) 

Therefore, I~-I < ¼ and 2~. + 1 > 0. Therefore there is only one element in the kernel, and 
it is when we do not have any fermion. This proves the theorem. [] 

T h e o r e m  2.3. I f  ~r ~ A, Bismut's dilatation are defined, and we have, in law, 

BEer --+ o~t (2.62) 

and 

A~.rwzwBEff --+ AIWZWO't. (2.63) 
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Proof We follow the line of Theorem 1.4. 

(a) Let us recall that we take EXn,  i o r  ~Y/ or EY//. So, if we take at least one derivative 

of erl, this tends to 0. So we have to consider the limit of  two derivatives of BE FI. We use 

(2.31) and (2.32) in order to show that this tends to two derivatives of  the limit functional 

without the parallel transport. Therefore dE.rdE.rBEer ~ dldlerl = 0 in law. 

(b) d* r d*r BEer is a finite sum. We use (2.35) and (2.37) in order to study 

(d(div (~ X,,.i )), • X,z, F ) (2.64) 

and the other analoguous formulas. We see that it tends in law to 

1 

f x '  ' , ( n,i" Xn',i') 

0 

(2.65) 

which is the derivative of  fo (X~n,i ' ¢~Ys,flat) along the flat vector field Xn, i,. We have the 
analoguous formulas for the other divergences and the other derivatives. This shows us that 

d* r d*rBEcr tends in law to d~ d ~  = 0, by using analoguous considerations as in (a). 

(c) d* r d~r BEer is more complicated. The most complicated term to treat is 

E -- VE Xn,i i Xn,i A Xn,i VE Xn.i BEer 

+ E diveXn.iix,.i m Xn, i VEXn. i BEer = A(E) + B(e). (2.66) 

In A(e), the terms which remain when e ---> 0 are the terms when we take two derivatives 

of  B, FI. It can be treated as in (a). A(E) tends in law to ~ -Vx,,.iix,,.i A Xn,iVx,,.ierl. 
Let us study B(E). We recognize an It6 integral by taking one derivative of erl tends to 

zero because V,x,,j er/ is in e/n. So we have to take the derivative of  BE FI. We recognize 

a sum of products of  terms which by (a) converges in law to a non-anticipative It6 integral, 

which converges by (2.35). 

This shows us that d* r dErBEer converges in law to d~ dter/. 
(d) Let us consider the case of  dEr A dF/e 2. Let us recall that dF/E 2 is equal to 

1 1 1 

0 0 0 

t 

A Yi" 

(2.67) 

If we derive BEer, we create a series of  Xn A X m multiplied by a term in C/[([n[ + 1) 
(Iml + 1)], and C tends to zero if we take a derivative of  ¢ri. So if we take derivative of 

BEer, we have to take only one derivative of  BEFI, and since in law fd co(dy.~, Xn,i)/~ --> 

f(~ o9( dys,flat, Xn,i) and is bounded by C/n, we have, if we take the derivative of  B~cr, the 

limit behavior of  dl dFt A ~/ when we take the derivative of  o~/. 
The difficult term is when we take the derivative of dF/E 2. The most complicated term 

is as in (e), Theorem 1.4, 
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1 

z f °)(Ys)(DXm'i' Xn.j)Xm,i A Xn,j. 
0 

(2.68) 

This is cancellation in this term, and it tends to zero when e --+ 0, because in the integration 
by part ( 1.47), we get O(1 / (In I -I- 1 ) (Im I -t- 1)) which tends uniformly to zero when E --+ 0. 

(e)  In a simpler way, we see that dF/e 2 A d~.rBEcr tends in law to dF/ A dtffl. 
(f) dF/e2.i dF/~2 + i dF/~2, dF/e 2 is equal to 

2 2 2 

Z ( i  O)(d~/s'xn'i))~: - ~ Z  ( i  O)(dys'Yi))~: " ~ - Z  ( i  °9(dys' Y ; ) )  ' 6  

(2.69) 

which tends in law to II dFlll 2. 
(g) dF/~ 2 A d~rB,~r tends in law to dFt A d~crt because d*rBEa is a finite sum. 
(h) It is the same for d*ri dF/~2 B, cr. 
(i) dEri dF/,2 does not cause any difficulty. Namely ( d f l  o 09 (dys, Xn,i)/E, ~ Xn,,i,) be- 

haves as fo c°(X'n'.i" Xn.i) at the limit, the divergence being cancelled by the integration 

by part (1.47). This last expression is the derivative along Xn, i, of fo  09( dys.flat, Xn.i ). 
In idF/~2 A d~r, we create an infinite sum of Xn,i A Xn,,i, ; each component is bounded 

by C/[(Inl + 1)(Int[ -I- 1)]; the derivatives of or1 are can6elling, and the most complicated 

term to Consider is fo  og(dys, Xmi)/~( dB, Ft, Xn',i'). This tends in law to idF~ A dl. 
(j) The last term to study is d* r dF/~ 2. The most boring term is 

 <di 1 

°J(dys, Xn,i), Xn,i) + Z f og(dys, Xn,i) div Xn,i = Z div Xi, 
0 

(2.70) 

where -~i is the vector field over the based loop space given by 

J ) DXi.s = "Cs -- o)(dyu, rurl-/~ei) q- w(dyu, rurl-/~ei) q- C rl-/~ei. 
o 

(2.71) 

C is introduced in order to get a vector over the based loop such that its average is equal 
I 

to zero. We use the fact that s --+ fo  co(dy, ,  rurl/~ei) is adapted modulo-the term in rl/2 
whose derivative tends to zero. We deduce from (2.35), that in law 

div (i  ) j -1 -1 -- w(dyu, rurl/2ei)rl/2ei ~ -- 
0 O<u<s<l 

o-)(dyu,flat, ei)(ei, dBs.ftat) 

(2.72) 
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over the based path space. The other terms in time s are constant. In particular in law, over 

the based path space 

I 1 I 1 

divf~o(dy, ,r , ,r l /~ei)~ fo~(d×,.nat, ei) f(ei ,dR~,na,)- fo~(eids,  ei). 
0 0 0 0 

(2.73) 

The last term vanishes because w is antisymmetric. For the computation of  the divergence 

of C in (2.70), we operate as in the first case. Let us recall that we want in fact to compute 

this divergence over the pinned Brownian bridge. We proceed as in (1.49) and in (1.50). We 

use the fact that co is antisymmetric,  and we see that in law over the Brownian bridge 

f (ei, dBs,flat)w(dyu,flat,  ei) .  div)~i .-.> (2.74) 

0 < s  < u  < I 

3. Cohomology  groups 

drwzw does not define a complex. We can define a complex following the lines of L6andre 

[L5]. 

Let cr be an n-form over P(L, L'). In local coordinates over L and L' ,  we can write cr as 

(~ = E ~ j , j ,  A dxj A dxj,, (3.1) 

where dxj is a set of forms over L and dxj, is a set of  forms over L '  we get by taking the 

different possible wedge products of  a local smooth orthonormal basis of TL and of TL,. 

Grj.j, appears as a form over the tangent space of  the pinned Brownian bridge going from 

x 6 L t o y 6 L ' .  
Therefore cyj,j, is given by kernels 

O J,J' : O~J,J'(SI . . . . .  SI), ( 3 . 2 )  

where O'J.Jt(S I . . . . .  SI) is a l-cotensor over TM(~'o) and such that 

I 

f GJ, Jt(S[ . . . . .  sl)dSi = 0 (3.3) 

0 

because we operate for such kernels over the tangent space of  the pinned Brownian motion. 

We can take the covariant derivative of  aj.j, as a l-cotensor over TM (~'o) by taking the 

pullback Vo of the Levi-Civita connection over TM by the evaluation map y ~ Y0. 

vkGj.j , is given by the kernels G j , j , ( S  1 . . . . .  SI; tl . . . . .  tk') k <_ k. We say that o~j,j , 
belongs to the Sobolev space Nk,p in the sense of  Nualar t -Pardoux if 

I ! 
I[Cr J ,J ' (S 1 . . . . .  SI ; t 1 . . . . .  tk' ) -- (Y J,J'(Stl . . . . .  Sl ; t I . . . . .  tk, ) [lLP 

< C ( p , k ) ( Z ~ s i - s ; l + Z ~  ) (3.4) 
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over each components of  the diagonals and if 

sup ]ltTJ, j ' (S l  . . . . .  St; tl . . . . .  tl)IILP = C'(p, k) < cx~. (3.5) 

This works modulo a partition of  unity over L and U O (L, U).  We set as Nualart-Pardoux 

Sobolev norms of  an n-form: 

2np 
[JcrJ[p,k- (n --p)!n' Z Z Z {C(p'k')(trJ,J')+C'(p'k')(aJ,J')}" (3.6) 

• U<_k O(L,U) j,  j t  

We get equivalent norms when we change the system of partition of unity and the system 

of local orthonormal basis of  the tangent space of  L or of  L'. 

If we consider a series of  n forms tr = y~ an, we take as Sobolev Nualart-Pardoux norm 

of tr the expression: 

I1~ [Ip,k = ~ I1~. IIp,k. (3.7) 

Let us recall that V~rl is a cotensor which checks the Nualart-Pardoux conditions. Namely 

by the Bismut formula: 

1 
g *  

V0.Xrl = rl ] rs-J R(dys, Xs)rs (3.8) 

0 

and its kernel checks the Nualart-Pardoux conditions• The kernel of V~rj over the open 

Brownian motion checks the Nualart-Pardoux conditions, because, by iterating (3.8), and 

using the fact that a product of  iterated integrals is still a sum of iterated integrals, the kernel 

of  V0krl is given by iterated integrals with frozen terms, which check the Nualart-Pardoux 

conditions over the open Brownian motion. By averaging, we deduce that they still satisfy 

the Nualart-Pardoux conditions for the pinned Brownian motion. 

We say that a form is smooth in the Nualart-Pardoux sense, if it belongs to all the 

Nualart-Pardoux spaces. 

Let us operate in Yl instead of  Y0. The kernel of the form is transformed in a (si, . . . .  Sn) 
r~  l . . .  rl-J, and we have to consider the covariant derivatives V~ of  the transformed kernels. 
But, 

Vl ri HI = (V0rl)H1 + rl VoH]. (3.9) 

We deduce that we get the same space of  forms smooth in the Nualart-Pardoux sense if we 
interchange the role of  L and of  L',  because V~rl satisfy the Nualart-Pardoux conditions, 

and that the set of  Nualart-Pardoux Sobolev norms are equivalent when we interchange the 
role of  L and U.  

Let us recall that the exterior derivative of  an n-form cr is defined as follows: 

. . . . .  Xn+l )  = Z ( - I )  i-1 ( dcr(Xl . . . . .  S i  . . . . .  Xn+l ) ,  X i )  dcr (XI 

J r - Z ( - - l ) i + J f f ( [ X i ,  X j l ,  X l  . . . . .  X i  . . . . .  f ( j  . . . . .  Xn+l ) ,  
i<j  

(3.10) 
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where .~ denotes the omission operator and the X i are  vector fields. 

From (3.8), we deduce that the problem of defining dcr is strongly related to the problem 

of defining an anticipative Stratonovitch integral over the pinned brownian motion. We can 

use the analoguous in this situation of Lemma 1.2 of L6andre [L6] in order to deduce that: 

Theorem 3.1. The exterior derivative is continuous over the space N.  P ~  o f  forms smooth 

in the Nualart-Pardoux sense. 

Moreover, the exterior product is continuous over the space of forms smooth in the 

Nualart-Pardoux sense (see [L5, Theorem 1.2]). We can compute the kernel of  d F  = 

fo 0)(dgs, X.,). It is L I 0)(dgu, r . ) -  fd d s L  I 0)(dgu, ru). The dxj part is fo t 0)(dx,, r , ( l -  

s ). I and the dx j ,  part is f ]  0) (d)~, r~ s r 1-1. ). We deduce that d F checks the Nualart-Pardoux 

conditions. 

We have therefore the following theorem. 

Theorem 3.2. The stochastic Witten complex d + d F  is continuous over the space N P~ 

o f  forms smooth in the Nualart-Pardoux sense. 

Let us now define the algebraic counterpart of  this complex, called the Hochschild-Witten 

complex. Let I2(L) be the set of forms over TL and I-2 (L') be the set of forms over TI,. Let 

1-2. (M) the set of  forms over M of degree larger than 1 over M. 

Let ~ (L) ® 12. (M) ®n ® 12 (L'). On of each element of  this tensor product, we consider 

the Sobolev-Hilbert space II • Ilk,2 defined by 

ll0)llk,2 = II(dd* + d* d + 2)k0)llL 2 (3.1 1 ) 

and we consider as tensor product the tensor product of Hilbert spaces. 

Ifd~ = Y~&n where &n c S2(L) ® S2.(M) ®" ® Y2(L'), we put i fz  > 0, 

,rt/  

... ~ ll0)~ Ilk.2. (3.12) 

The space of  smooth Hochschild elements is given by the intersection of the Hilbert spaces 

given by the norms II • II~,k. We call A ~  this space. It is a Sobolev double bar construction 

[MC]. 

We define bp = bo,p + bl,p, where 

bo.p~On = do)0 ® 0)1 ® " " " ® 0 ) n + l  

- -  Z ( - - 1 )  ~i I0 )O®0) l®. . .®d0) i® . . .®0)n+l ,  (3.13) 
I < i < n + l  

where Ei = deg 0)0 + Zl<_j<_i deg 0)j - 1 and &n = o90 ® " "  ® 0)n+l. bl.p is defined by 

bl,p = 0)0 A 0)1 ® 0)2 ® ' "  ® 0 ) n + l  

- Z (-1)~i0)° ® " "  ®wi A 0)i+1 ® " ' '  ®0)n+l- (3.14) 
l < i < n  
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Moreover, d F  is the Chen form associated with co. We consider the shuffle product 03.cb 

0 3 . f f g = 0 3 o ( ~ ( Z  s i g n 0 3 , ® ' ' ' 0 3 i ® 0 3 ® W i + l ® ' ' ' ® 0 3 n ) ( ~ 0 3 n + , .  (3.15) 
\ i  <i <n 

The sign arises from the anticommutation relation over forms; let us recall that the degree of 

03o and the degree of  03n+l are kept in this formalism and that the degree of  the other forms 

is substracted from one unit. Let us recall, moreover, that the shuffle product is continuous 

[L6, Theorem IV. 1 ], and that if) --+ 03.d~ is continuous over the Hochschild space Aoo. 

Moreover, since 03 is a symplectic form, d03 = 0. We deduce that 

bp03. + 03.bp = 0. (3.16) 

We give the following definition: 

Definition 3.3. b e + 03. is called the Hochschild-Witten complex over Am. 
It is a complex because b 2 = 0, 03.03. = 0 and (3.16). 

The techniques of [L5] show the following result. 

Theorem 3.4. The Hochschild-Witten complex is continuous over Am. 

Let 27 the map Chen iterated integral: 

27(030 ®031 ® "'" ®03n ® 03n+t) 

= 030(Y0) A f 031(dE~I'')A'"A03n(dysn'')A03n+I(Yl)" 

0<Sl <. .-<sn<l 

We have 

27bp = d r  

and 

2703. = d F /x E . 

By a proof similar to [L5, Theorem II. 1], we have the following result. 

Theorem 3.5. 27 is continuous from A ~  into N.Poo. 

(3.17) 

(3.18) 

(3.19) 

Remark .  exp[F] does not belong to all the Sobolev spaces. So it is not clear that the 
cohomology of  N . P ~  for d ÷ d F A  is equal to the cohomology of  N . P ~  for d, although 
d + d F A  is formally d by using the scalar gauge transform exp[F]. 
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